Stereoselective Total Synthesis of FD-891

J. S. Yadav,* Sukant Kishore Das, and G. Sabitha

Natural Products Chemistry Division I, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

Supporting Information

ABSTRACT: FD-891, a structurally unique 16-membered macrolide having anticancer activity, was synthesized according to a strategy employing asymmetric allylation, Prins cyclization, crossmetathesis reaction, Yamaguchi lactonization, and Julia–Kocienski olefination.

INTRODUCTION

FD-891 (1) is a novel macrolide isolated in 1994 by a Japanese group from the fermentation broth of Streptomyces graminofaciens A-8890.1 FD-891 exhibited a notable cytotoxic activity in vitro against various cancer cell lines and also prevents both perforin and FasL-dependent CTL-mediated killing pathways.² More recently, it has been found to be the phytotoxic agent of infections by Streptomyces spp. causing potato russet scab.³ Initially, the structure of FD-891 was found to be a 18membered macrolide, based on the results of chemical degradations and X-ray diffraction analyses of some degradation products, which was later revised as 16-membered macrolide $\mathbf{1}^{4}_{1}$ with no changes in stereochemistry, but one double bond has now been moved from inside the ring to the side chain. The limited availability of 1 together with its unique structural feature and promising biological activity make it an attractive synthetic target for total synthesis.⁵ As part of our continued interest in the total synthesis of macrolides,⁶ we embarked on the total synthesis of FD-891 (1). Herein, we describe an efficient and stereoselective total synthesis of FD-891.

RESULTS AND DISCUSSION

Our retrosynthetic analysis of 1 is depicted in Scheme 1. The target molecule 1 could be made from 2 and 3 by using Julia–Kocienski olefination, whereas 2 could be realized from 4 and 5 by cross-metathesis reaction followed by Yamaguchi lactonization (Scheme 1).

Our approach for the synthesis of fragment 4 (Scheme 2) began with regioselective opening of known epoxy alcohol 6^7 with lithium dimethylcuprate to give an inseparable mixture of 1,3-diol and 1,2-diol products (3:1).⁷ After oxidative cleavage with sodium periodate, the undesired 1,2-diol compound was separated. Protection of the major 1,3-diol 7 as di-TBS ether 8, followed by PMB group removal, furnished primary alcohol 9. The resulting alcohol 9 was then oxidized to aldehyde with IBX and subjected to Wittig olefination with two-carbon Wittig ylide to provide ester 10, which on reduction with DIBAL-H provided the allylic alcohol 11. The resulting alcohol was then

Scheme 1. Retrosynthetic Analysis

protected as its PMB ether to afford 12. Selective removal of the primary TBS group in the presence of the secondary TBS group was accomplished with PPTS in MeOH at 0 °C for 1 h to furnish the required alcohol 13. The free alcohol was then oxidized to the aldehyde, and subsequent Wittig olefination provided ester 14. DIBAL-H reduction of ester gave allylic alcohol 15, which was oxidized to the corresponding aldehyde using MnO_2 followed by Horner–Wadsworth–Emmons olefination to provide the conjugated dienoate 16. Oxidative removal of the PMB group in wet DCM using DDQ gave the

Received: October 8, 2012 Published: November 8, 2012

Scheme 2. Synthesis of Fragment 4

allylic alcohol 17 in 88% yield. Asymmetric Sharpless epoxidation provided epoxy alcohol 18, which was converted into the aldehyde and subjected to asymmetric allylation using (+)-IPC₂ allylborane to produce homoallyl alcohol 19 in 60% overall yield as a 92:8 mixture of diastereoisomers.^{5b,8} After purification by column chromatography the major diastereomer 19 was converted into the TBS ether to provide the desired fragment 4.

The synthesis of fragment **5** (Scheme 3) began with the known epoxy alcohol **20**,⁹ which was opened with Me₃Al in pentane from -10 °C to rt to provide a mixture of two inseparable 1,2-diol and 1,3-diol products.¹⁰ Fortunately, separation by column chromatography proved possible after acetonide protection (**21**, 70%). Hydrolysis of **21** with PTSA and MeOH provided the required diol **23** in 85% yield. Diol **23** on treatment with tosyl imidazole in the presence of NaH at 0 °C gave the epoxide **24** in 70% yield. This epoxide was opened with vinyl magnesium bromide in the presence of catalytic CuI to give homoallyl alcohol **25** in 85% yield, and subsequent removal of benzyl group and the selective protection of primary hydroxyl group as TBS ether provided **5**.

Generation of the 4 chiral centers in the side chain of 1 was achieved through application of Prins cyclization. Thus, synthesis of sulfone began (Scheme 4) with the Prins cyclization reaction of known homoallylic alcohol 27 and (S)-3-(benzyloxy)-2-methylpropanal 28 in the presence of trifluoroacetic acid followed by hydrolysis of the resulting trifluoroacetate to afford the tetrasubstituted pyran 29.11 The preparation of homoallyl alcohol 31 with the required chiral centers was realized through selective tosylation of the primary hydroxyl group in 29 followed by convertion into iodo derivative and reductive ring-opening of pyran. Next, the 1,3diol was protected as an acetonide and removal of benzyl group provided the primary alcohol 33, which was oxidized to the aldehyde by Dess-Martin periodinane. Addition of 2 equiv of methyl Grignard reagent to the aldehyde furnished the racemic alcohol 34, which was without purification directly oxidized with Dess-Martin periodinane to provide methyl ketone 35 in 85% yield over the two steps. Reduction of 35 under chelation control conditions¹² furnished the alcohol as a diastereomeric mixture in 85:15 ratio. The required major isomer 36 was separated by column chromatography and subjected to methylation to give the corresponding methyl ether 37. The double bond in compound 37 was then transformed to the alcohol 38 by ozonolysis followed by reduction with NaBH₄. Introduction of the sulfide by Mitsunobu^{5c,13} reaction and

Scheme 3. Synthesis of Fragment 5

Scheme 4. Synthesis of Fragment 3

oxidation of the sulfide to sulfone^{5c,14} afforded the Julia– Kocienski olefination substrate **3**.

With both coupling partners **4** and **5** in hand, we could now investigate the cross-metathesis reaction. Accordingly, Grubbs' second generation catalyst¹⁵ in refluxing CH_2Cl_2 provided **39** in 65% yield. Hydrolysis of the ethyl ester produced seco-acid, which readily lactonized under standard Yamaguchi^{5a,16} conditions to give the macrolactone **40** in 60% yield.

Selective cleavage of the primary TBS group followed by Dess-Martin oxidation (Scheme 5) delivered the aldehyde 2 and set the stage for Julia-olefination reaction.

The aldehyde **2** was subjected to Julia–Kocienski olefination^{5a} with sulfone **3** as reported to provide the *E*-olefin **42** in 80% yield (Scheme 6). The deprotection of two TBS groups and the acetonide was achieved in one- pot by using $H_2SiF_6^{5a}$ to give the cytotoxic macrolide FD-891 (1) in 90% yield.

The spectral data (¹H NMR, ¹³C NMR), optical rotation ($[\alpha]^{25}_{D}$ +11.5, *c* 0.1, MeOH, lit.^{1,4} value $[\alpha]_{D}$ +14.0, *c* 0.1, MeOH), and HRMS data of synthetic (1) were in agreement with those of the natural product.

CONCLUSION

We have described a stereoselective total synthesis of cytotoxic macrolide FD-891. The key features of the synthesis are the use of the asymmetric allylation, Prins cyclization, cross-metathesis reaction, Yamaguchi lactonization, and Julia–Kocienski olefination.

EXPERIMENTAL SECTION

All reactions were performed under inert atmosphere, if argon mentioned. All glassware apparatus used for reactions were perfectly oven/flame-dried. Anhydrous solvents were distilled prior to use: THF from Na and benzophenone; CH₂Cl₂, DMSO from CaH₂; MeOH from Mg cake. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (60–120 mesh) unless otherwise mentioned. Analytical thin layer chromatography (TLC) was run on silica gel 60 F254 precoated plates (250 μ m thickness). Optical rotations [α]_D were measured on a polarimeter and given in 10⁻¹ deg cm² g⁻¹. Infrared spectra were recorded in CHCl₃/ KBr (as mentioned) and reported in wavenumber (cm⁻¹). Mass spectral data were obtained using MS (EI) ESI, HRMS mass spectrometers. High resolution mass spectra (HRMS) [ESI+] were

obtained using either a TOF or a double focusing spectrometer. ¹H NMR spectra were recorded at 300, 400, 500 and ¹³C NMR spectra 75 MHz in CDCl₃ solution unless otherwise mentioned; chemical shifts are in ppm downfield from tetramethylsilane; and coupling constants (*J*) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

(2R,3S)-4-(4-Methoxybenzyloxy)-2-methylbutane-1,3-diol (7). To a stirred suspension of CuI (4.24 g, 22.3 mmol) in dry Et₂O (50 mL) was slowly added methyl lithium (27.9 mL, 1.6 M, 44.6 mmol) in ether at 0 °C under nitrogen atmosphere, and the resulting solution was stirred for 15 min at 0 °C. Epoxy alcohol 6 (2.0 g, 8.92 mmol) in dry Et₂O (20 mL) was then added dropwise at -40 °C. Once the addition was completed, the reaction mixture was stirred at 0 °C for 3 h. The reaction was guenched by the addition of saturated aqueous NH₄Cl. The mixture was filtered through a Celite pad, and the salts were washed several times with Et₂O. The organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced pressure to provide a 3:1 mixture of the regioisomeric diols. The crude mixture was dissolved in 10% aqueous THF (50 mL), and NaIO₄ (1.9 g, 8.92 mmol) was added at 0 °C to cleave the 1,2-diol. The reaction was completed in 1 h. After the layers were separated, the aqueous layer was extracted with Et₂O. The organic layer was dried over anhydrous Na2SO4, and solvent was removed under reduced pressure. The crude residue was purified on silica gel column chromatography (70% EtOAc/hexane) to provide the desired diol 7 (1.4 g, 68%) as a yellow oil. $[\alpha]_{D}^{25}$ +2.5, (c 1.5, CHCl₃); ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.25 \text{ (d, } J = 9.0 \text{ Hz}, 2\text{H}), 6.88 \text{ (d, } J = 9.0 \text{ Hz},$ 2H), 4.49 (d, J = 3.0 Hz 2H), 4.0-3.95 (m, 1H), 3.80 (s, 3H), 3.67-3.60 (m, 2H), 3.49 (d, J = 5.0 Hz, 2H), 2.77 (brs, 2H), 1.90-1.80 (m, 1H), 0.92 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 159.2, 129.8, 129.3, 113.7, 73.0, 72.2, 72.1, 65.9, 55.1, 37.3, 10.9; IR (neat) 3403, 2929, 1612, 1513, 1247, 1032, 820 cm⁻¹; ESIMS m/z 263 [M + Na]⁺

(5S,6R)-5-((4-Methoxybenzyloxy)methyl)-2,2,3,3,6,9,9,10,10nonamethyl-4,8-dioxa-3,9-disilaundecane (8). The diol 7 (1.0 g, 4.16 mmol) was dissolved in CH_2Cl_2 (10 mL), and then imidazole (0.84 g, 12.48 mmol) was added followed by TBDMSCl (1.56 g, 10.4 mmol). After 16 h the reaction was washed with water $(1 \times 10 \text{ mL})$, and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL), dried over Na2SO4, and concentrated. Purification by silica gel chromatography (5% EtOAc/hexane) provided the silvl ether 8 (1.8 g, 95%) as a yellow oil. $[\alpha]_{D}^{25}$ -3.9, (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.25 (d, J = 7.5 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H), 4.49–4.37 (m, 2H), 4.02-3.96 (m, 1H), 3.81 (s, 3H), 3.56-3.34 (m, 4H), 1.86-1.76 (m, 1H), 0.89(s, 9H), 0.87(s, 9H), 0.80 (d, J = 6.8 Hz, 3H), 0.03 (s, 12H), $^{13}\mathrm{C}$ NMR (CDCl₃, 75 MHz) δ 159.0, 129.1, 113.6, 72.9, 72.7, 70.6, 65.2, 55.2, 38.8, 25.9, 18.2, 10.3, -4.1, -5.0, -5.3; IR (neat) 2954, 2930, 2857, 1250, 1093, 836, 775 cm⁻¹; ESI HRMS m/z calcd for $C_{25}H_{48}O_4NaSi_2 [M + Na]^+$ 491.29833, found 491.29739.

(25,3R)-2,4-Bis(tert-butyldimethylsilyloxy)-3-methylbutan-1ol (9). To a solution of the compound 8 (1.7 g, 3.62 mmol) in CH_2Cl_2 (10 mL) and pH 7 buffer solution (1 mL) was added DDQ (1.84 g, 5.44 mmol) at 0 °C, and the mixture was allowed to stir for 2 h at room temperature. The reaction mixture was quenched with saturated NaHCO₃ solution (10 mL) and diluted with CH_2Cl_2 (10 mL). The two layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL). The combined organic layer was washed with brine (2 \times 20 mL), dried over anhydrous Na₂SO₄, and evaporated to give a red crude product, which on purification by silica gel column chromatography (15% EtOAc/hexane) provided the desired primary alcohol 9 (1.2 g, 95%) as a colorless liquid. $[\alpha]^{25}_{D}$ -3.0, (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 3.76-3.69 (m, 1H), 3.61-3.48 (m, 4H), 1.85-1.74 (m, 1H), 0.91(s, 9H), 0.89 (s, 9H), 0.89 (d, J = 6.8 Hz, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.05 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 74.0, 64.8, 64.7, 39.4, 25.8, 18.1, 12.4, -4.4, -4.8, -5.5; IR (neat) 3419, 2954, 2930, 2858, 1253, 1053, 837, 774 cm⁻¹; ESI HRMS m/z calcd for $C_{17}H_{41}O_3Si_2$ [M + H]⁺ 349.25887, found 349.25946.

(4R,5R,E)-Ethyl 4,6-Bis(tert-butyldimethylsilyloxy)-5-methylhex-2-enoate (10). To an ice-cooled solution of 2-(iodooxy)benzoic acid (1.2 g, 4.3 mmol) in anhydrous DMSO (1.2 mL, 14.3 mmol) was added a solution of alcohol 9 (1.0 g, 2.86 mmol) in anhydrous CH_2Cl_2 (20 mL). The mixture was stirred at room temperature for 3 h, then filtered through a Celite pad, and washed with Et_2O (2 × 10 mL). The combined organic filtrates were washed with H_2O (2 × 5 mL) and brine, dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude product was immediately dissolved in C₆H₆ (20 mL), and stable two-carbon Wittig yilide (3.0 g, 8.58 mmol) was added. The reaction mixture was refluxed for 3 h and then allowed to cool to rt. The solvent was removed under reduced pressure, and the compound was purified by silica gel column chromatography (5% EtOAc/hexane) to provide 10 (1.06 g, 90%) as pale yellow oil. $[\alpha]^{25}$ -7.3, (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 6.93 (dd, J = 4.5, 15.1 Hz, 1H), 5.95 (d, J = 17.4 Hz, 1H), 4.52–4.47 (m, 1H), 4.19 (q, J= 6.8 Hz, 2H), 3.56-3.38 (m, 2H), 1.76-1.67 (m, 1H), 1.29 (t, J = 7.5 Hz, 3H), 0.91(s, 9H), 0.88 (s, 9H), 0.80 (d, J = 6.8 Hz, 3H), 0.06 (s, 3H), 0.04 (s, 6H), 0.01 (s, 3H); 13 C NMR (CDCl₃, 75 MHz) δ 166.5, 150.8, 120.2, 71.0, 64.3, 60.1, 41.8, 25.8, 18.1, 14.1, 10.3, -4.4, -5.2, -5.4; IR (neat) 2956, 2932, 2858, 1724, 1256, 1101, 838, 776 cm⁻¹; ESI HRMS m/z calcd for $C_{21}H_{44}O_4NaSi_2 [M + Na]^+ 439.26703$, found 439.26569.

(4R,5R,E)-4,6-Bis(tert-butyldimethylsilyloxy)-5-methylhex-2en-1-ol (11). To a solution of 10 (1 g, 2.4 mmol) in CH₂Cl₂ (10 mL) was added 3.44 mL of DIBAL-H (1.76 M in hexane, 6.0 mmol) at 0 °C. The solution was stirred for 1 h at the same temperature and then quenched by addition of saturated Na/K tartrate at 0 °C. The solution was warmed to room temperature and stirred for 3 h until two clear layers were observed. The layers were separated, and the aqueous layer was further extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were dried over anhydrous Na2SO4, and solvent was evaporated under reduced pressure. The crude residue was purified by silica gel column chromatography (20% EtOAc/hexane) to provide 11 (0.82 g, 92%) as colorless oil. $[\alpha]^{25}_{D}$ –1.9, (c 0.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 5.77-5.68 (m, 2H), 4.30-4.25 (m, 1H), 4.19-4.10 (m, 2H), 3.59-3.51 (m, 1H), 3.40 (dd, J = 6.8, 9.8 Hz, 1H), 1.68-1.59 (m, 1H), 0.89 (s, 9H), 0.88 (s, 9H), 0.83 (d, J = 6.8 Hz, 3H), 0.04 (s, 3H), 0.03 (s, 6H), 0.0 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 134.2, 128.8, 72.3, 64.8, 63.2, 42.4, 25.9, 18.2, 10.9, -4.1, -5.0, -5.4; IR (neat) 3358, 2955, 2931, 2858, 1467, 1253, 1090, 837, 775 cm⁻¹; ESI HRMS m/z calcd for C₁₉H₄₂O₃NaSi₂ [M + Na]⁻ 397.25647, found 397.25752.

(5R,6R)-5-((E)-3-(4-Methoxybenzyloxy)prop-1-enyl)-2,2,3,3,6,9,9,10,10-nonamethyl-4,8-dioxa-3,9-disilaundecane (12). To a suspension of 60% sodium hydride (0.11 g, 4.675 mmol) dispersion in mineral oil in THF (10 mL) at 0 °C (0.7 g, 1.87 mmol) was slowly added alcohol 11. The resulting mixture was stirred at 0 °C. After 1 h freshly prepared p-methoxybenzylbromide (0.55 g, 2.8 mmol) was added, and stirring at room temperature was continued for 10 h. The mixture was carefully quenched by addition of water (10 mL). The resulting layers were separated, and the aqueous portion was extracted with EtOAc $(2 \times 10 \text{ mL})$, washed with brine (10 mL), and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to afford the crude product, which was purified by silica gel column chromatography (10% EtOAc/hexane) to provide 12 (0.855 g, 93%) as colorless oil. $[\alpha]^{25}_{D}$ –2.0, (c 0.6, CHCl₃); ¹H NMR $(CDCl_{3}, 300 \text{ MHz}) \delta 7.25 \text{ (d, } J = 8.3 \text{ Hz}, 2\text{H}), 6.88 \text{ (d, } J = 9.0 \text{ Hz},$ 2H), 5.72-5.68 (m, 2H), 4.43 (s, 2H), 4.30-4.26 (m, 1H), 4.0 (d, J = 3.7 Hz, 2H), 3.81 (s, 3H), 3.60–3.50 (m, 1H), 3.43–3.36 (dd, J = 6.8, 9.8 Hz, 1H), 1.69-1.59 (m, 1H), 0.90 (s, 9H), 0.89 (s, 9H), 0.84 (d, J = 6.8 Hz, 3H), 0.04 (s, 3H), 0.03 (s, 6H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 159.1, 135.7, 130.4, 129.2, 126.4, 113.7, 72.4,71.3, 69.9, 64.8, 55.1, 42.5, 25.9, 18.1, 10.9, -4.1, -5.0, -5.4; IR (neat) 2954, 2930, 2857, 1513, 1466, 1250, 1097, 837, 775 cm⁻¹; ESI HRMS m/z calcd for C₂₇H₅₀O₄NaSi₂ [M + Na]⁺ 517.31398, found 517.31533.

(2*R*,3*R*,*E*)-3-(*tert*-Butyldimethylsilyloxy)-6-(4 methoxybenzy-loxy)-2-methylhex-4-en-1-ol (13). To a stirred solution of 12 (0.8 g, 1.615 mmol) in MeOH (0.08 g, 0.32 mmol) was added PPTS, and the mixture was stirred for 1 h at 0 °C. After completion of reaction, it

was quinched with solid NaHCO₃, and methanol was removed under reduced pressure. Water was added and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The residue was purified on silica gel column chromatography (20% EtOAc/hexane) to provide **13** (0.5 g, 85%) as colorless oil. $[\alpha]^{25}_{D}$ –2.8, (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.25 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 8.3 Hz, 2H), 5.79–5.75 (m, 2H), 4.44 (s, 2H), 4.32–4.27 (m, 1H), 4.02 (d, *J* = 3.0 Hz, 2H), 3.81 (s, 3H), 3.70–3.62 (m, 1H), 3.49 (dd, *J* = 10.6, 3.8 Hz, 1H), 2.09–1.92 (m, 1H), 0.90 (s, 9H), 0.81 (d, *J* = 7.5 Hz, 3H), 0.09 (s, 3H), 0.05 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 159.1, 132.5, 130.2, 129.2, 128.1, 113.7, 76.1,71.4, 69.6, 65.5, 55.1, 40.9, 25.7, 18.0, 12.2, -4.4, -5.2; IR (neat) 3429, 2955, 2931, 2857, 1612, 1513, 1465, 1250, 1094, 1037, 836, 776 cm⁻¹; ESI HRMS *m*/*z* calcd for C₂₁H₃₆O₄NaSi [M + Na]⁺ 403.22751, found 403.22661.

(2E,4R,5R,6E)-Ethyl 5-(tert-Butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-2,4-dimethylocta-2,6-dienoate (14). To an ice-cooled solution of 2-(iodooxy)benzoic acid (0.475 g, 1.77 mmol) in anhydrous DMSO (0.47 mL, 5.9 mmol) was added a solution of alcohol 13 (0.45 g, 1.18 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred at room temperature for 4 h, then filtered through a Celite pad, and washed with Et₂O (2×10 mL). The combined organic filtrates were washed with H_2O (2 × 5 mL) and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was immediately dissolved in CH₂Cl₂ (20 mL), and Ph₃=C(CH₃)- CO_2Et Wittig yilide (1.63 g, 3.5 mmol) was added. The reaction mixture was refluxed for 15 h and then allowed to cool to room temperature. The solvent was removed under reduced pressure, and the compound was purified by silica gel column chromatography (10% EtOAc/hexane) to provide 14 (0.462 g, 85%). $[\alpha]_{D}^{25}$ +2.0, (c 0.5, $CHCl_3$); ¹H NMR (CDCl₃, 300 MHz) δ 7.25 (d, J = 9.0 Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 6.66 (dq, J = 10.5, 1.5 Hz, 1H), 5.72-5.67 (m,)2H), 4.41 (s, 2H), 4.29–4.11 (m, 2H), 4.04 (t, J = 5.3 Hz, 1H), 4.01– 3.97 (m, 2H), 3.80 (s, 3H), 2.63-2.53 (m, 1H), 1.83 (d, J = 1.4 Hz, 3H), 1.27 (t, J = 6.8 Hz, 3H), 1.0 (d, J = 6.8 Hz, 3H), 0.91 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); 13 C NMR (CDCl₃, 75 MHz) δ 168.2, 159.1, 144.3, 134.4, 129.2, 127.5, 113.7, 75.7, 71.2, 69.6, 60.3, 55.2, 40.2, 25.8, 18.1, 17.2, 14.7, 14.2, 12.6, -4.1, -5.0; IR (neat) 2956, 2931, 2856, 1711, 1513, 1465, 1249, 1102, 1035, 836, 776 cm⁻¹; ESIMS m/z 485 $[M + Na]^+$.

(2E,4R,5R,6E)-5-(tert-Butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-2,4-dimethylocta-2,6-dien-1-ol (15). To a solution of 14 (0.45 g, 0.97 mmol) in CH₂Cl₂ (15 mL) was added 1.38 mL of DIBAL-H (1.76 M in hexane, 2.435 mmol) at 0 °C. The solution was stirred for 1 h and quenched by addition of saturated Na/K tartrate at 0 °C. The solution was warmed to room temperature and stirred for 3 h until two clear layers were observed. The layers were separated, and the aqueous layer was further extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and solvent was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography (10% EtOAc/ hexane) to provide 15 (0.38 g, 93%) as colorless oil. $[\alpha]_{D}^{25}$ -12, (c 0.4, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.25 (m, 2H), 6.88 (m, 2H), 5.66-5.64 (m, 2H), 5.25 (d, J = 10.0 Hz, 1H), 4.42 (s, 2H), 4.01-3.90 (m, 5H), 3.81 (s, 3H), 2.53-2.43 (m, 1H), 1.65 (s, 3H), $0.97 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.04 (s, 3H), 0.01 (s, 3H); {}^{13}C$ NMR (CDCl₃, 75 MHz) δ 159.1, 135.6, 134.5, 130.2, 129.3, 129.0, 126.7, 113.7, 77.0, 71.4, 69.8, 69.0, 55.2, 39.1, 25.8, 18.2, 16.3, 14.1, -4.1, -4.8; IR (neat) 3446, 2955, 2929, 2856, 1613, 1513, 1463, 1249, 1037, 835, 773 cm⁻¹; ESIMS m/z 443 [M + Na]⁺

(2E,4E,6R,7R,8E)-Ethyl 7-(*tert*-Butyldimethylsilyloxy)-10-(4methoxybenzyloxy)-2,4,6-trimethyldeca-2,4,8-trienoate (16). Activated MnO₂ (1.08 g, 12.45 mmol) was added to a solution of 15 (0.35 g, 0.83 mmol) in dry CH_2Cl_2 (25 mL), and the mixture was refluxed for 3 h and then allowed to cool to room temperature. The reaction mixture was filtered through a Celite pad with CH_2Cl_2 , and removal of solvent under reduced pressure provided the crude aldehyde, which was used in the next step.

At 0 $^{\circ}$ C, 0.9 mL of *n*-BuLi (1.6 M, 1.42 mmol) was added to the solution of phosphonate (0.35 mL, 1.63 mmol) in dry THF. The

The Journal of Organic Chemistry

mixture was stirred for 15 min at 0 °C, and the crude aldehyde dissolved in dry THF was added dropwise. The stirring was continued for 16 h at 0 °C. The reaction was quenched by the addition of saturated aqueous NH₄Cl, and the aqueous portion was extracted with EtOAc (2×20 mL). The residue was purified by silica gel column chromatography (20% EtOAc/hexane) to provide 16 (0.35 g, 84%) as colorless oil. $[\alpha]^{25}_{D}$ +20, (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.18 (d, J = 8.3 Hz, 2H), 7.03 (s, 1H), 6.81 (d, J = 9 Hz, 2H), 5.68-5.64 (m, 2H), 5.40 (d, J = 9.8 Hz, 1H), 4.38 (s, 2H), 4.18 (q, J = 7.5 Hz, 2H), 3.99-3.90 (m, 2H), 3.79 (s, 3H), 2.63-2.51 (m, 1H), 1.95 (s, 3H), 1.82 (s, 3H), 1.31 (t, J = 6.8 Hz, 3H), 1.0 (d, J = 6.8 Hz, 3H), 0.91 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.0, 159.0, 142.9, 138.2, 134.6, 131.6, 130.4, 129.2, 127.4, 125.5, 113.7, 76.6, 71.3, 69.7, 60.5, 55.2, 40.0, 38.4, 25.8, 18.1, 16.7, 16.3, 14.3, 14.0, -4.0, -4.8; IR (neat) 2956, 2930, 2856, 1706, 1249, 1111, 1036, 835, 773 cm⁻¹; ESI HRMS m/z calcd for C₂₉H₄₆O₅NaSi [M + Na]+ 525.30067, found 525.29846.

(2E,4E,6R,7R,8E)-Ethyl 7-(tert-Butyldimethylsilyloxy)-10-hydroxy-2,4,6-trimethyldeca-2,4,8-trienoate (17). To a solution of the compound 16 (0.325 g, 0.646 mmol) in CH₂Cl₂ (10 mL) and water (1 mL) was added DDQ (0.215 g, 0.97 mmol) at 0 °C, and the mixture was allowed to stir for 2 h at room temperature. The reaction mixture was quenched with saturated NaHCO₃ solution (5 mL) and diluted with CH₂Cl₂ (10 mL). The two layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layer was washed with brine $(2 \times 10 \text{ mL})$, dried over anhydrous Na₂SO₄, and evaporated to give the crude product, which was purified by column chromatography (5% EtOAc/hexane) to provide the desired alcohol 17 (0.21 g, 85%) as a colorless oil. $[\alpha]^{25}_{D}$ +22, (c 0.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.08 (s, 1H), 5.81–5.62 (m, 2H), 5.41 (d, J = 9.8 Hz, 1H), 4.2 (q, J = 6.8 Hz, 2H), 4.16–4.10 (m, 2H), 3.98 (t, J = 6.1 Hz, 1H), 2.64–2.52 (m, 1H), 1.98 (s, 3H), 1.81 (s, 3H), 1.30 (t, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.1, 142.9, 138.0, 133.0, 131.6, 129.7, 125.5, 76.5, 63.1, 60.5, 40.0, 25.8, 18.1, 16.7, 16.2, 14.3, 14.0, -4.1, -4.8; IR (neat) 3451, 2956, 2931, 2858, 1706, 1253, 1114, 1028, 837, 776 cm⁻¹; ESI HRMS m/z calcd for $C_{21}H_{38}O_4NaSi [M + Na]^+$ 405.2431, found 405.2424.

(2E,4E,6R,7S)-Ethyl 7-(tert-Butyldimethylsilyloxy)-7-((2R,3S)-3-(hydroxymethyl)oxiran-2-yl)-2,4,6-trimethylhepta-2,4-dien**oate (18).** Powdered 4 Å MS (50 mg) were suspended in dry CH_2Cl_2 (5 mL) and cooled to -23 °C. Titanium-tetraisopropoxide (146.5 μ L, 0.52 mmol) and L-(+)-DET (96 μ L, 0.52 mmol) were added at the same temperature followed by the alcohol 17 (0.2 g, 0.52 mmol) in dry CH₂Cl₂. The reaction mixture was stirred at -23 °C for 20 min followed by addition of tert-butylhydroperoxide (0.52 mL, 5 M in DCM, 2.6 mmol), and stirring was continued for 24 h at -23 °C. The reaction was quenched with water (1 mL) and stirring for 30 min at room temperature, then addition of 30% aq NaOH (0.5 mL) and further stirring for 30 min. Workup with CH₂Cl₂ and purification by column chromatography (30% EtOAc/hexane) provided the desired epoxy alcohol **18** (0.175 g, 85%) as a colorless oil. $[\alpha]^{25}_{D}$ +5.0, (c 1.9, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.05 (s, 1H), 5.51 (d, J = 9.6 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.90 (brs, 1H, OH), 3.65-3.55 (m, 3H), 3.08 (dt, I = 3.0, 1.5 Hz, 1H), 2.97 (dd, I = 3.6, 2.2 Hz, 1H), 2.76-2.62 (m, 1H), 1.98 (s, 3H), 1.85 (s, 3H), 1.31 (t, J = 7.0 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.0, 142.5, 137.7, 131.9, 125.8, 73.4, 61.1, 60.6, 56.4, 55.5, 37.6, 25.8, 18.2, 16.5, 15.5, 14.2, 14.0, -4.2, -4.9; IR (neat) 3454, 2957, 2930, 2857, 1706, 1253, 1115, 1030, 836, 777 cm⁻¹; ESI HRMS m/z calcd for C₂₁H₃₈O₅NaSi [M + Na]⁺ 421.23862, found 421.2366.

(2*E*,4*E*,6*R*,7*S*)-Ethyl 7-(*tert*-Butyldimethylsilyloxy)-7-((2*R*,3*S*)-3-((*R*)-1-hydroxybut-3-enyl)oxiran-2-yl)-2,4,6-trimethylhepta-2,4-dienoate (19). Oxalyl chloride (82 μ L, 0.925 mmol) was added dropwise at -78 °C to a solution of DMSO (132 μ L, 1.85 mmol) in dry CH₂Cl₂ (5 mL). The mixture was stirred for 5 min at this temperature. A solution of epoxy alcohol 18 (150 mg, 0.37 mmol) in dry CH₂Cl₂ (2 mL) was added. The reaction mixture was stirred for 15 min at -78 °C. After addition of Et₃N (0.5 mL, 3.7 mmol), the mixture was stirred for 15 min at -78 °C and then for 20 min at 0 °C. Workup with CH₂Cl₂ gave a crude aldehyde, which was used for the next step without further purification.

A solution of (+)-IPC₂B(allyl) (1.0 M in pentane, 0.6 mL, 1.2 mmol) in Et₂O (5 mL) was cooled to -100 °C, and a solution of the above crude aldehyde in 20 mL of diethyl ether was added slowly. The mixture was stirred at -100 °C for 2 h and then warmed to 0 °C. The reaction was quenched by the dropwise addition of 1 mL of 30% H₂O₂ (aq) and 0.5 mL of 1 N NaOH. The mixture was diluted with 10 mL of ethyl acetate, and the layers were separated. The aqueous layer was extracted with $(3 \times 10 \text{ mL})$ ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated. The crude reaction mixture was further purified by silica gel column chromatography (5% EtOAc/hexane) to give homoallyl alcohol 19 as a 92:8 diastereomeric mixture (98 mg, 60%). $[\alpha]_{D}^{25}$ +8.9, (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.10 (s, 1H), 5.93–5.78 (m, 1H), 5.53 (d, J = 9.8 Hz, 1H), 5.20–5.10 (m, 2H), 4.20 (q, J = 6.8 Hz, 2H), 3.73-3.58 (m, 2H), 3.08-3.0 (m, 2H), 2.76-2.64 (m, 1H), 2.38 (t, J = 7.5 Hz, 2H), 2.0 (s, 3H), 1.85 (s, 3H), 1.30 (t, J = 6.8 Hz, 3H),1.06 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.0, 142.5, 137.7, 133.4, 132.0, 125.9, 118.5, 73.3, 68.8, 60.6, 57.4, 56.8, 39.5, 37.6, 25.8, 18.2, 16.5, 15.7, 14.3, 14.0, -4.2, -4.9; IR (neat) 3481, 2930, 2858, 1704, 1253, 1115, 835, 774 cm⁻¹; ESI HRMS m/z calcd for C₂₄H₄₂O₅NaSi [M + Na] 461.26917, found 461.27017.

(2E,4E,6R,7S)-Ethyl 7-(tert-Butyldimethylsilyloxy)-7-((2R,3R)-3-((R)-1-(tert-butyldimethylsilyloxy)but-3-enyl)oxiran-2-yl)-2,4,6-trimethylhepta-2,4-dienoate (4). 2,6-Lutidine (28 µL, 0.24 mmol) was added to a solution of alcohol 19 (70 mg, 0.16 mmol) in dry CH₂Cl₂ (5 mL). The reaction mixture was stirred for 10 min at room temperature, followed by dropwise addition of TBSOTf (46.5 μ L, 0.19 mmol). The mixture was stirred for 1 h at room temperature and quenched by addition of water. The aqueous layer was extracted with CH2Cl2, dried over Na2SO4, and concentrated. The crude reaction mixture was purified by silica gel column chromatography (5% EtOAc/hexane) to provide the desired product 4 (83 mg, 95%) as a colorless oil. $[\alpha]^{25}_{D}$ +11.0, (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.10 (s, 1H), 5.82 (ddt, J = 17.4, 10.6, 6.8 Hz, 1H), 5.55 (d, J = 9.8 Hz, 1H), 5.14-5.02 (m, 2H), 4.20 (q, J = 6.8 Hz, 2H), 3.63-3.58 (m, 1H), 3.50–3.44 (m, 1H), 2.95 (dd, J = 5.3, 2.2 Hz, 1H), 2.88 (dd, *J* = 3.8, 2.2 Hz, 1H), 2.74–2.60 (m, 1H), 2.27 (t, *J* = 6.8 Hz, 2H), 2.0 (d, J = 1.5 Hz, 3H), 1.85 (d, J = 1.5 Hz, 3H), 1.30 (t, J = 6.8 Hz, 3H), 1.05 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.08 (s, 3H), 0.04 (s, 6H), 0.01 (s, 3H); 13 C NMR (CDCl₃, 75 MHz) δ 169.0, 142.6, 138.1, 134.4, 131.8, 125.8, 117.3, 73.5, 72.9, 60.6, 58.4, 57.1, 39.4, 37.6, 25.9, 25.9, 18.2, 18.1, 16.5, 15.7, 14.3, 14.0, -4.2, -4.4, -4.8, -4.9; IR (neat) 2957, 2931, 2858, 1709, 1252, 1113, 836, 775 cm⁻¹; ESI HRMS m/z calcd for C₃₀H₅₆O₅NaSi₂ [M + Na]⁺ 575.35585, found 575.35658.

(R)-4-((S)-4-(Benzyloxy)butan-2-yl)-2,2-dimethyl-1,3-dioxolane (21). To a stirred solution of epoxy alcohol 20 (1.5 g, 7.21 mmol) in dry CH₂Cl₂ (20 mL) and dry *n*-pentane (6 mL) was added Me₃Al (10.8 mL, 2 M in toluene, 21.6 mmol) dropwise at -10 °C under N2 atmosphere. The reaction mixture was stirred for 8 h at room temperature, diluted with CH2Cl2, quenched slowly with 1 N HCl (aq) (dropwise) at 0 °C, and extracted with EtOAc (3×20 mL). The combined organic fraction was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure to give the inseparable mixture of 1,2-diol and 1,3-diol. The crude reaction mixture was used for the next reaction. To the above crude mixture in dry acetone was added a catalytic amount of PTSA, and the mixture was stirred for 24 h at room temperature under N2 atmosphere. Then reaction mixture was quenched with saturated NaHCO₃ (aq) solution, and the acetone was removed from the reaction mixture under reduced pressure. Water was added to the residue and extracted with EtOAc (3 \times 20 mL). The combined organic fraction was dried over anhydrous Na₂SO₄, solvent was removed, and the crude residue was purified by silica gel column chromatography using (2% EtOAc/hexane) to afford acetonide **21** as an oil (1.33 g, 70% for two steps). $[\alpha]^{25}_{D}$ –11.4, (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.42–7.23 (m, 5H), 4.5 (s, 2H) 4.04–3.87 (m, 2H), 3.66–3.47 (m, 3H), 1.86–1.60 (m, 3H), 1.40 (s, 3H), 1.35 (s, 3H), 0.97 (d, *J* = 6.6, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.4, 128.2, 127.5, 108.5, 79.8, 72.8, 67.9, 67.4, 33.2, 32.6, 26.5, 25.3, 15.3; IR (neat) 2927, 1112, 1065 cm⁻¹; ESI HRMS *m/z* calcd for C₁₆H₂₄O₃Na [M + Na]⁺ 287.16177, found 287.16208.

(2*R*,3*S*)-5-(Benzyloxy)-3-methylpentane-1,2-diol (23). To a stirred solution of acetonide 21 (1.25 g, 4.725 mmol) in MeOH was added PTSA (0.8 g, 4.725 mmol), and the mixture was stirred for 24 h at room temperature. After completion of reaction, it was quenched with solid NaHCO₃, and the methanol was removed under reduced pressure. Water was added and extracted with EtOAc (3 × 25 mL). The combined organic fraction was dried over anhydrous Na₂SO₄, and solvent was removed under reduced pressure. The residue was purified on silica gel column chromatography (30% EtOAc/hexane) to afford 23 (0.9 g, 85%) as yellow oil. $[\alpha]^{25}{}_{\rm D}$ –2.9, (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.35–7.22 (m, SH), 4.50 (s, 2H), 3.72–3.40 (m, SH), 1.84–1.69 (m, 2H), 1.64–1.49 (m, 1H), 0.90 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 137.8, 128.4, 127.7, 75.1, 73.1, 68.1, 64.7, 33.3, 33.2, 14.2; IR (neat) 3405, 2930, 2871, 1078, 740, 698 cm⁻¹; ESIMS *m*/z 225 [M + H]⁺.

(*R*)-2-((*S*)-4-(Benzyloxy)butan-2-yl)oxirane (24). To a stirred solution of 60% sodium hydride dispersion in mineral oil (0.24 g, 9.75 mmol) in THF was added the diol 23 (0.875 g, 3.9 mmol) followed by tosyl-imidazole (1.73 g, 7.8 mmol), and the mixture was stirred for 30 min at 0 °C. After completion of reaction, water was added and extracted with EtOAc (3 × 20 mL). The combined organic fraction was dried over anhydrous Na₂SO₄, and solvent was removed under reduced pressure. The residue was purified on silica gel column chromatography (10% EtOAc/hexane) to afford the epoxide 24 (0.56 g, 70%) as colorless oil. $[\alpha]^{25}_{\text{D}}$ +2.0, (*c* 1.2, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.38–7.25 (m, 5H), 4.49 (s, 2H), 3.60–3.09 (m, 2H), 2.83–2.67 (m, 1H), 2.55–2.40 (m, 1H), 2.37–2.28 (m, 1H), 2.16–1.91 (m, 1H), 1.78–1.40 (m, 2H), 1.04 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.3, 128.3, 127.5, 72.9, 67.8, 56.6, 46.7, 33.3, 33.1, 16.9; IR (neat) 2925, 2861, 1101, 740 cm⁻¹; ESIMS *m*/z 224 [M+NH₄]⁺.

(4S,5S)-7-(Benzyloxy)-5-methylhept-1-en-4-ol (25). A freshly prepared vinyl magnesium bromide (4.85 mL, 4.85 mmol) (1 M solution in THF) was added dropwise to a solution of CuI (45 mg, 0.24 mmol) in THF (10 mL) at -20 °C. The mixture was stirred for 30 min, and chiral epoxide 24 (0.5 g, 2.4 mmol) was added in THF (10 mL) dropwise. After 2 h, the reaction was quenched with saturated solution of NH₄Cl (10 mL) and diluted with Et₂O (25 mL). The two layers were separated, and the aqueous layer was extracted with Et₂O $(3 \times 25 \text{ mL})$. The combined organic layer was washed with brine $(2 \times 25 \text{ mL})$. 10 mL), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The crude mass was purified by silica gel column chromatography (15% EtOAc/hexane) to afford the desired homoallyl alcohol **25** (0.45 g, 85%) as a colorless oil. $[\alpha]^{25}_{D}$ +6.8, (c 0.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.35–7.20 (m, 5H), 5.89–5.71 (m, 1H), 5.15-5.01 (m, 2H), 4.48 (s, 2H), 3.60-3.42 (m, 3H), 2.22-2.12 (m, 2H), 1.82–1.67 (m, 1H), 0.89 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.7, 128.3, 127.7, 127.6, 117.2, 73.4, 73.0, 68.2, 38.8, 35.3, 33.3, 13.4; IR (neat) 3446, 2928, 2863, 1096, 738, 698 cm⁻¹; ESI HRMS m/z calcd for C₁₅H₂₂O₂Na [M + Na]⁺ 257.15120, found 257.15161.

(35,45)-3-Methylhept-6-ene-1,4-diol (26). To a stirred solution of naphthalene (1.15 g, 9 mmol) in THF (10 mL) at room temperature were added lithium granules (62.5 mg, 9 mmol), and the solution was stirred at room temperature for 45 min to generate lithium naphthalenide. To the resulting dark green solution was added benzyl ether 25 (0.425 g, 1.8 mmol) at -20 °C, and the mixture was allowed the mixture to stir at the same temperature for 30 min and then was quenched with aqueous NH₄Cl, extracted into EtOAc (3 × 20 mL), dried over Na₂SO₄, concentrated in a rotary evaporator, and purified on silica gel column chromatography (40% EtOAc/hexane) to give diol 26 (220 mg, 85%) as colorless oil. $[\alpha]^{25}_{D}$ +10.6, (*c* 0.6, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 5.85–5.75 (m, 1H), 5.15–5.08 (m, 2H), 3.76–3.69 (m, 1H), 3.65–3.58 (m, 2H), 2.26–2.16 (m,

2H), 1.85–1.66 (m, 2H), 1.55–1.48 (m, 1H), 0.92 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.5, 117.5, 73.7, 60.3, 38.1, 35.9, 35.2, 13.8; IR (neat) 3355, 2933, 1055, 997, 772 cm⁻¹; ESIMS m/z 167 [M + Na]⁺.

(4S,5S)-7-(tert-Butyldimethylsilyloxy)-5-methylhept-1-en-4ol (5). To a solution of diol 26 (200 mg, 1.39 mmol) in CH_2Cl_2 (10 mL) at 0 °C under nitrogen atmosphere were added imidazole (188.5 mg, 2.77 mmol) and TBSCl (208 mg, 1.39 mmol). After 17 h of stirring for at room temperature, water was added. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 25 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated in a rotary evaporator. Purification by silica gel column chromatography (10% EtOAc/hexane) gave primary protected alcohol 5 (280 mg, 80%). $[\alpha]^{25}_{D}$ +2.0, (c 0.3, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 5.90–5.75 (m, 1H), 5.15–5.03 (m, 2H), 3.78-3.53 (m, 3H), 2.20 (t, J = 6.8 Hz, 2H), 1.80-1.62 (m, 2H), 1.50-1.42 (m, 1H), 0.91 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 6H); 13 C NMR (CDCl₃, 75 MHz) δ 135.9, 117.0, 73.6, 61.2, 38.6, 36.4, 35.4, 25.9, 13.5, -5.4; IR (neat) 3432, 2955, 2931, 2859, 1095, 834, 776 cm⁻¹; ESI HRMS m/z calcd for $C_{14}H_{31}O_2Si$ [M + H]⁺ 259.20878, found 259.20887.

(2S,3R,4S,6S)-2-((R)-1-(Benzyloxy)propan-2-yl)-6-(hydroxymethyl)-3-methyltetrahydro-2H-pyran-4-ol (29). Trifluoroacetic acid (27.6 mL) was added slowly to a solution of homoallylic alcohol 27 (2.0 g, 17.24 mmol) and (S)-3-(benzyloxy)-2-methylpropanal 28 (9.18 g, 51.7 mmol) in CH₂Cl₂ (30 mL) at room temperature under nitrogen atmosphere. The reaction mixture was stirred for 3 h, then saturated aqueous sodium hydrogen carbonate solution (30 mL) was added, and the pH was adjusted to >7 by addition of triethylamine. The layers were separated, the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL), the organic layers were combined, and the solvent was removed under reduced pressure. The residue was dissolved in methanol (20 mL) and stirred with potassium carbonate (1.05 g) for 0.5 h. The methanol was then removed under reduced pressure, and water (15 mL) was added. The mixture was extracted with dichloromethane $(3 \times 20 \text{ mL})$, the combined organic layers were dried (Na₂SO₄), and the solvent was removed under reduced pressure. Purification by silica gel column chromatography (30% EtOAc/ hexane) gave 29 (3.04 g, 60%) as a colorless oil. $[\alpha]^{25}_{D}$ -8.5 (c 1.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.16 (m, 5H), 4.55-4.39 (m, 2H), 3.72-3.18 (m,7H), 2.21-2.03 (m, 1H), 1.87-1.75 (m, 1H), 1.47–1.20 (m, 2H), 0.95 (d, J = 6.2 Hz, 3H), 0.84 (d, J = 6.9 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 128.2, 127.5, 127.4, 79.4, 75.4, 73.0, 71.4, 70.4, 67.4, 40.4, 36.7, 34.1, 12.0, 9.5; IR (neat) 3407, 2926, 2863, 1095, 744 cm⁻¹; ESIMS m/z 317 [M + Na]⁺

((2S,4S,5R,6S)-6-((R)-1-(Benzyloxy)propan-2-yl)-4-hydroxy-5methyltetrahydro-2H-pyran-2-yl)methyl 4-Methylbenzenesulfonate (30). To a solution of diol 29 (3.0 g, 10.17 mmol) in dry CH₂Cl₂ (15 mL) was added triethylamine (5.6 mL, 40.67 mmol) at 0 °C, followed by addition of tosyl chloride (2.31 g, 12.2 mmol) over 2 h. The reaction mixture was allowed to warm to room temperature and was stirred for 5 h. The reaction mixture was treated with aqueous 1 N HCl (1 mL) and extracted with CH_2Cl_2 (3 × 20 mL). The organic layer was washed with saturated aqueous NaHCO₃ (6 mL) solution and water (6 mL). The combined organic phases were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by silica gel column chromatography (20% EtOAc/hexane) gave 30 (3.87 g, 85%) as a gummy liquid. $[\alpha]_{D}^{25}$ -10.1 (c 0.7, CHCl₃); ¹H NMR (300 MHz, $CDCl_3$) δ 7.72 (d, J = 4.1 Hz, 2H), 7.44–7.15 (m, 7H), 4.43(d, J = 4.1 Hz, 2H), 4.18-3.75 (m, 2H), 3.63-3.43 (m, 1H), 3.43-3.03 (m, 4H), 2.43 (s, 3H), 2.19-1.79 (m, 2H), 1.66 (brs, 1H, OH), 1.52–1.07 (m, 2H), 0.90 (d, J = 6.5 Hz, 3H), 0.74 (d, J = 6.5 Hz, 3H), 13 C NMR (75 MHz, CDCl₃) δ 144.7, 138.6, 132.8, 129.7, 128.3, 127.8, 127.5, 127.4, 79.4, 73.1, 73.0, 72.8, 72.4, 71.9, 40.1, 36.8, 34.0, 21.6, 11.9, 9.3; IR (neat) 3448, 2927, 2862, 1364, 1178, 1092, 979, 670 cm⁻¹; ESI MS m/z 627 [M + Na]⁺.

(2R,3S,4R,5S)-1-(Benzyloxy)-2,4-dimethyloct-7-ene-3,5-diol (31). NaI (25.4 g, 169.4 mmol) was added to a solution of 30 (3.8 g, 8.47 mmol) in acetone (50 mL), and the mixture was heated to reflux for 24 h. Acetone was removed under reduced pressure. Water (20 mL) was added to the residue and extracted with EtOAc (2×30 mL). The organic layer was separated, dried over Na₂SO₄, and without isolation treated with commercial zinc dust (10.78 g, 169.4 mmol) in ethanol. The mixture was refluxed for 1 h and then cooled to 25 °C. Addition of solid ammonium chloride (1 g) and Et₂O (20 mL) followed by stirring for 5 min gave a gray suspension. The suspension was filtered through Celit, and the filtrate was concentrated under reduced pressure. Purification by silica gel column chromatography (30% EtOAc/hexane) gave 31 (1.88 g, 80%) as a colorless liquid. $[\alpha]^{25}_{D} - 12 (c \ 0.3, CHCI_3); {}^{1}H \ NMR \ (CDCl_3, 300 \ MHz) \delta 7.37 - 7.24$ (m, 5H), 5.91-5.72 (m, 1H), 5.14-5.04 (m, 2H), 4.50 (d, J = 2.3 Hz, 2H), 3.89-3.76 (m, 2H), 3.57-3.50 (m, 2H), 2.36-2.03 (m, 2H), 2.0-1.71 (m, 2H), 0.99 (d, J = 6.8 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₂, 75 MHz) δ 136.9, 134.8, 128.5, 128.0, 127.5, 118.2, 78.2, 75.5, 74.7, 73.7, 38.5, 36.5, 34.8, 12.3, 10.0; IR (neat) 3443, 2970, 2927, 1455, 1096, 746, 698 cm⁻¹; ESI HRMS m/z calcd for $C_{17}H_{27}O_3$ $[M + H]^+$ 279.09602, found 279.09379.

(4S,5R,6S)-4-Allyl-6-((R)-1-(benzyloxy)propan-2-yl)-2,2,5-trimethyl-1,3-dioxane (32). To a solution of compound 31 (1.8 g, 6.46 mmol) in dry CH₂Cl₂ (5 mL) were added 2,2-dimethoxypropane (1.85 mL, 12.92 mmol) and a catalytic amount of PPTS. The mixture was stirred at room temperature for 10 h, then aqueous NaHCO₃ solution was added to neutralize PPTS, and the mixture was filtered. Removal of solvent and purification by silica gel column chromatography (10% EtOAc/hexane) gave acetonide 32 (1.75 g, 85%) as a clear liquid. $[\alpha]_{D}^{25}$ -11.8 (c 0.3, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.30-7.19 (m, 5H), 5.76 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H), 5.09-4.96 (m, 2H), 4.46 (s, 2H), 3.78-3.73 (m, 1H), 3.44-3.37 (m, 2H), 3.31-3.26 (m, 1H), 2.22–2.14 (m, 1H), 2.09–2.02 (m, 1H), 1.86–1.76 (m, 2H), 1.25 (s, 6H), 0.90 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 138.6, 135.4, 128.2, 127.5, 127.5, 116.3, 100.3, 73.9, 73.0, 72.9, 69.2, 36.3, 36.1, 35.1, 25.0, 23.5, 11.8, 11.1; IR (neat) 2928, 2855, 1224 cm⁻¹; ESI HRMS m/z calcd for C₂₀H₃₀O₃Na $[M + Na]^+$ 341.20872, found 341.20955.

(R)-2-((4S,5R,6S)-6-Allyl-2,2,5-trimethyl-1,3-dioxan-4-yl)propan-1-ol (33). To a stirred solution of naphthalene (3.39 g, 26.7 mmol) in THF (10 mL) were added lithium granules (0.19 g, 26.7 mmol) at room temperature, and the solution was allowed to stir at room temperature for 45 min to generate Li naphthalenide. To the resulting dark green solution was added benzyl ether 32 (1.7 g, 5.33 mmol) at -10 °C, and the mixture was allowed to stir at the same temperature for 30 min, quenched with aqueous NH₄Cl, extracted into EtOAc (3 × 20 mL), dried over Na₂SO₄, concentrated, and purified on silica gel (30% EtOAc/hexane) to give alcohol 33 (1.0 g, 90%). $[\alpha]^{25}$ -16.8 (c 0.5, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 5.76 (ddt, J = 17.0, 10.4, 6.8 Hz, 1H), 5.13-4.98 (m, 2H), 3.84-3.74 (m, 1H), 3.63-3.57 (m, 2H), 3.52-3.47 (m, 1H), 2.26-2.01 (m, 2H), 1.92-1.73 (m, 2H), 1.34 (s, 3H), 1.30 (s, 3H), 0.96 (d, J = 7.1 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.0, 116.5, 100.5, 77.3, 69.3, 67.0, 37.3, 35.5, 35.1, 25.1, 23.6, 12.2, 10.6; IR (neat) 3421, 2980, 2935, 1380, 1224, 1020 cm⁻¹; ESI HRMS m/z calcd for $C_{13}H_{24}O_{3}Na [M + Na]^{+} 251.16177$, found 251.16250.

(*R*)-3-((4*S*,5*R*,6*S*)-6-Allyl-2,2,5-trimethyl-1,3-dioxan-4-yl)butan-2-ol. To a solution of alcohol 33 (0.9 g, 3.94 mmol) in dry CH_2Cl_2 (20 mL) were added Dess–Martin periodinane (3.1 g, 7.28 mmol) and NaHCO₃ (0.61 g, 7.28 mmol) at 0 °C under nitrogen atmosphere. The turbid solution was allowed to warm to room temperature and was stirred for 2 h. The reaction was diluted with CH_2Cl_2 (15 mL) and quenched with saturated aqueous NaHCO₃ (10 mL) and saturated aqueous Na₂S₂O₃ (10 mL). The mixture was vigorously stirred until a clear solution was formed. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were washed with brine (1 × 20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated to give a crude aldehyde, which was used for the next step without further purification

MeMgBr (2.4 mL, 3M, 7.28 mmol) was added dropwise to a stirred solution of the aldehyde in dry THF (15 mL) at 0 $^{\circ}$ C. After addition was completed, the reaction mixture was allowed to stir at room temperature for 1 h and then quenched with saturated aqueous NH₄Cl

solution. The organic layer was separated, and the compound from the aqueous layer was extracted with ethyl acetate (2 \times 20 mL). The combined organic layers were washed with water and brine solution, dried over Na₂SO₄, and concentrated under reduced pressure. The crude mass was purified by silica gel column chromatography (20% EtOAc/hexane) to afford a racemic mixture (0.81 g, 85%) as a viscous liquid.

(S)-3-((4R,5R,6S)-6-Allyl-2,2,5-trimethyl-1,3-dioxan-4-yl)butan-2-one (35). To a solution of the above racemic alcohol (0.8 g, 3.3 mmol) in dry CH₂Cl₂ (10 mL) were added Dess-Martin periodinane (2.81 g, 6.6 mmol) and NaHCO₃ (0.55 g, 6.6 mmol) at 0 °C under nitrogen atmosphere. The turbid solution was allowed to warm to room temperature and was stirred for 2 h. The reaction was diluted with CH2Cl2 (10 mL) and quenched with saturated aqueous NaHCO₃ (10 mL) and saturated aqueous Na₂S₂O₃ (10 mL). The mixture was vigorously stirred until a clear solution was formed. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were washed with brine $(1 \times 15 \text{ mL})$, dried over anhydrous Na₂SO₄, filtered, concentrated, and purified by silica gel column chromatography (20% EtOAc/hexane) to afford methyl ketone 35 (0.68 g, 85%) as a viscous liquid. $[\alpha]^{25}{}_{\rm D}$ +8.8 (c 0.6, CHCl₃), ¹H NMR (CDCl₃, 500 MHz) δ 5.74 (ddt, J = 17., 10.0, 7.9 Hz, 1H), 5.10-4.99 (m, 2H), 3.78-3.72 (m, 1H), 3.62-3.57 (m, 1H), 2.58-2.50 (m, 1H), 2.23-2.16 (m, 2H), 2.15 (s, 3H), 2.08-2.01 (m, 1H), 1.86-1.79 (m, 1H), 1.28 (s, 3H), 1.25 (s, 3H), 1.12 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 5.9 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 210.8, 135.0, 116.5, 100.5, 75.0, 69.0, 50.1, 36.1, 35.1, 29.6, 28.9, 25.0, 23.6, 12.1, 10.4; IR (neat) 2983, 2931, 1713, 1379, 1225 cm⁻¹; ESI HRMS m/z calcd for C₁₄H₂₄O₃Na [M + Na]⁺ 263.16177, found 263.16246.

(2S,3R)-3-((4S,5R,6S)-6-Allyl-2,2,5-trimethyl-1,3-dioxan-4-yl)butan-2-ol (36). To a solution of methyl-ketone 35 (0.6 g, 2.49 mmol) in MeOH (10 mL) at 0 °C under N2 atmosphere were added cerium chloride hepatehydrate (0.29 g, 2.49 mmol) and NaBH₄ (0.294 g, 2.49 mmol). After 1 h of stirring at 0 °C, saturated NH₄Cl was added. The organic layer was separated, and the aqueous layer was extracted twice with CH2Cl2. The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure, to gave a mixture of alcohols in the ratio of 85:15. Purification by silica gel column chromatography (20% EtOAc/hexane) gave the required alcohol 36 (0.38 g, 75%). $[\alpha]_{D}^{25}$ –5.2 (c 1.0, CHCl₃), ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 5.75 \text{ (ddt, } J = 17.2, 10.6, 6.6 \text{ Hz}, 1\text{H}), 5.12-4.98$ (m, 2H), 3.99–3.90 (m, 1H), 3.82–3.73 (m, 1H), 3.50–3.45 (m, 1H), 2.81 (s, 1H), 2.26-1.99 (m, 2H), 1.92-1.78 (m, 1H), 1.36 (s, 3H), 1.31 (s, 3H), 1.13 (d, J = 6.2 Hz, 3H), 0.95 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 135.0, 116.6, 100.6, 80.0, 72.5, 69.2, 40.2, 36.1, 35.0, 24.9, 23.8, 20.7, 11.9, 5.4; IR (neat) 3453, 2979, 2934, 1380, 1224, 1016 ${\rm cm}^{-1};$ ESI HRMS m/zcalcd for C₁₄H₂₆O₃Na [M + Na]⁺ 265.17742, found 265.17819.

(4S,5R,6S)-4-Allyl-6-((2R,3S)-3-methoxybutan-2-yl)-2,2,5-trimethyl-1,3-dioxane (37). To a suspension of NaH (60%) (0.04 g, 1.8 mmol) in THF (3 mL) at 0 $^{\circ}$ C under N₂ atmosphere was added a solution of alcohol 36 (0.3 g, 1.2 mmol) in THF (2 mL). The mixture was stirred for 1 h at room temperature, and MeI (0.56 mL, 9.0 mmol) was added. After 5 h of stirring at room temperature, saturated NH₄Cl was added. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (10% EtOAc/ hexane) gave 37 (0.25 g, 80%). $[\alpha]^{25}_{D}$ -8.3 (c 1.5, CHCl₃); ¹H NMR $(\text{CDCl}_3, 300 \text{ MHz}) \delta 5.76 \text{ (ddt, } J = 16.6, 10.4, 6.2 \text{ Hz}, 1\text{H}), 5.12-4.95$ (m, 2H), 3.82-3.69 (m, 1H), 3.39-3.30 (m, 1H), 3.29 (s, 3H), 3.22-3.10 (m, 1H), 2.26-2.12 (m, 1H), 2.11-1.99 (m, 1H), 1.81-1.70 (m, 1H), 1.57–1.47 (m, 1H), 1.29 (s, 3H), 1.26 (s, 3H), 1.09 (d, J = 6.2 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.82 (d, J = 6.8 Hz, 3H); ¹³C NMR $(\text{CDCl}_3, 75 \text{ MHz}) \delta$ 135.3, 116.2, 100.1, 78.8, 73.7, 69.1, 56.2, 41.4, 36.7, 35.1, 25.1, 23.6, 16.1, 11.8, 10.1; IR (neat) 2978, 2933, 1378, 1224, 1099 cm⁻¹; ESI HRMS m/z calcd for $C_{15}H_{28}O_3Na [M + Na]^+$ 279.19307, found 279.19350.

2-((4S,5R,6S)-6-((2R,3S)-3-Methoxybutan-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)ethanol (38). To a solution of alkene 37 (0.22 g, 0.85 mmol) in CH_2Cl_2 (5 mL) and MeOH (1 mL) under N_2 atmosphere at -78 °C was added O₃. After the solution turned blue, argon was bubbled into the solution until it turned colorless. NaBH₄ was added at -78 °C, and the mixture was warmed to room temperature. Saturated NH₄Cl was added, then the organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated. Purification by column chromatography (30% EtOAc/hexane) gave primary alcohol **38** (0.17 g, 80%). $[\alpha]^{25}_{D}$ +7.8; ¹H NMR (CDCl₃, 300 MHz) δ 4.06–3.97 (m, 1H), 3.80–3.73 (m, 1H), 3.72-3.65 (m, 1H), 3.42-3.36 (m, 1H), 3.31 (s, 3H), 3.26-3.20 (m, 1H), 1.88-1.73 (m, 2H), 1.68-1.55 (m, 2H), 1.34 (s, 3H), 1.32 (s, 3H), 1.13 (d, J = 6.8 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 100.2, 78.8, 73.6, 69.8, 61.9, 56.2, 41.2, 37.2, 25.3, 23.6, 16.1, 12.2, 10.1; IR (neat) 3399, 2931, 1378, 1226, 1056 cm⁻¹; ESIMS m/z 261 [M + H]⁺.

5-(2-((45,5*R*,65)-6-((2*R*,35)-3-Methoxybutan-2-yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)ethylsulfonyl)-1-phenyl-1*H*-tetrazole (3). A solution of alcohol 38 (0.15 g, 0.57 mmol) and 1-phenyl-1*H*tetrazole-5-thiol (0.2 g, 1.14 mmol) in dry THF (10 mL) was cooled to 0 °C under N₂ and treated sequentially with *n*-Bu₃P (0.35 mL, 1.42 mmol) and DIAD (0.28 mL, 1,42 mmol). After 90 min of stirring at 0 °C, the reaction was quenched by addition of H₂O (1 mL) and then stirred vigorously for 2 min. Workup with EtOAc and purification by silica gel column chromatography (10% EtOAc/hexanes) provided the intermediate sulphide (0.2 g, 90%) as a colorless oil.

A solution of the sulfide from above (0.15 g, 0.34 mmol) in EtOH (10 mL) was treated with Mo₇O₂₄(NH₄)₆·4H₂O (0.12 mg, 0.1 mmol) and 30% aq H₂O₂ (0.1 mL, 3.4 mmol) at 0 °C. After stirring at room temperature for 16 h, the reaction mixture was poured into a saturated aqueous solution of sodium thiosulphate, stirred for 5 min, and extracted with EtOAc. The combined organic phases were washed with brine, dried over Na2SO4, and filtered. Solvent removal under reduced pressure, and the residue was purified by silica gel column chromatography (10% EtOAc/hexane) to afford sulphone 3 (0.13 g, 85%) as a dense oil. $[\alpha]_{D}^{25}$ –1.6 (c 0.8, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) & 7.74-7.59 (m, 5H), 3.96-3.84 (m, 2H), 3.81-3.73 (m, 1H), 3.43–3.37 (m, 1H), 3.31 (s, 3H), 3.26–3.20 (m, 1H), 2.16–1.91 (m, 3H), 1.90–1.79 (m, 1H), 1.32 (s, 3H), 1.29 (s, 3H), 1.20 (d, J = 6.2 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 0.82 (d, J = 7.0 Hz, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 131.4, 129.7, 125.0, 100.5, 78.7, 73.5, 67.7, 56.2, 53.7, 41.2, 37.1, 29.7, 25.2, 23.9, 16.1, 11.9, 10.1; IR (neat) 2925, 1344, 1151, 764 cm⁻¹; ESI HRMS *m/z* calcd for C₂₁H₃₂O₅N₄NaS [M + Na]+ 475.19856, found 475.19945.

(2Z,4E,6R,7S)-Ethyl 7-(tert-Butyldimethylsilyloxy)-7-((2R,3R)-3-((5R,10S,11S,E)-10-hydroxy-2,2,3,3,11,15,15,16,16-nonamethyl-4,14-dioxa-3,15-disilaheptadec-7-en-5-yl)oxiran-2-yl)-2,4,6-trimethylhepta-2,4-dienoate (39). To a solution of ester 4 (60 mg, 0.108 mmol) and Grubb's second-generation catalyst (16.2 mg, 0.02 mmol) in CH₂Cl₂ (2 mL) at reflux was added slowly (0.7 mL/h) a solution of alkene 5 (36.2 mg, 0.140 mmol) in CH₂Cl₂ (2 mL) using a syringe pump. After 8 h of stirring at reflux, the solvent was removed, and the residue was purified by silica gel column chromatography (30% EtOAc/hexane) to give the coupling product **39** (55 mg, 65%). $[a]^{25}_{D}$ +4.5 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 7.05 (s, 1H), 5.60–5.44 (m, 3H), 4.19 (q, *J* = 7.5 Hz, 2H), 3.82-3.35 (m, 5H), 2.94-2.79 (m, 2H), 2.72-2.60 (m, 1H), 2.45-2.06 (m, 4H), 1.99 (s, 3H), 1.87 (s, 3H), 1.76-1.60 (m,2H), 1.52-1.41 (m, 2H), 1.32 (t, J = 7.5 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.07 (s, 3H), 0.06 (s, 36H), 0.05 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.1, 142.7, 138.2, 132.1, 130.0, 128.4, 127.0, 126.0, 73.9, 73.5, 72.8, 61.2, 60.6, 58.5, 56.8, 38.3, 37.9, 36.5, 35.5, 35.2, 29.7, 25.8, 18.2, 18.1, 16.6, 15.5, 14.3, 14.0, 13.4, -4.1, -4.5, -4.8, -4.9, -5.1; IR (neat) 2955, 2929, 2856, 1253, 1108, 835, 776 cm⁻¹; ESI HRMS m/z calcd for C₄₂H₈₂O₇Si₃Na [M + Na]⁺ 805.52606, found 805.52376.

(1*R*,2*R*,4*E*,7*S*,10*E*,12*E*,14*R*,15*S*,16*R*)-2,15-Bis(*tert*-butyldimethylsilyloxy)-7-((*S*)-4-(*tert*-butyldimethylsilyloxy)butan-2-yl)-10,12,14-trimethyl-8,17-dioxabicyclo[14.1.0]heptadeca**4,10,12-trien-9-one (40).** To a solution of ester **39** (50 mg, 0.063 mmol) in THF (5 mL) was added TMSOK (81 mg, 0.63 mmol). After 17 h of stirring, a solution of citric acid 0.5 N was added. The aqueous layer was extracted with EtOAc (2×20 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated. Purification through a plug of silica gave the acid. The compound was used immediately for the next step.

To a solution of the acid (45 mg, 0.062 mmol) in THF (3 mL) were added Et₃N (43 μ L, 0.31 mmol) and 2,4,6-tricholorbenzoyl chloride (18.6 μ L, 0.124 mmol). After stirring for 17 h, the solution was passed through a plug of Celite and rinsed with hexanes. The solvent was removed, and the corresponding anhydride was dissolved in toluene (3 mL), which was added to a solution of DMAP (72.6 mg, 0.62 mmol) in toluene via a syringe pump (0.35 mL/h). After 17 h of stirring, saturated NH4Cl was added, and the aqueous layer was extracted twice with Et₂O. The combined organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. Purification by silica gel column chromatography (20% EtOAc/hexane) gave macrocycle 40 in 60% yield for 2 steps. $[\alpha]^{25}_{D}$ +12.0 (c 0.3, CHCl₃); ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.38 \text{ (s, 1H)}, 5.63-5.56 \text{ (m, 3H)}, 4.86-4.78 \text{ (m, m)}$ 1H), 4.08-4.04 (m, 1H), 3.78-3.71 (m, 1H), 3.69-3.62 (m, 1H), 3.40-3.35 (m, 1H), 3.10 (dd, J = 7.0, 2.0 Hz, 1H), 2.92-2.85 (m, 2H), 2.52-2.40 (m, 3H), 2.27-2.18 (m, 1H), 2.06 (s, 3H), 1.97 (s, 3H), 1.83-1.73 (m, 1H), 1.38-1.21 (m, 2H), 1.08 (d, J = 6.9 Hz, 3H), 0.91 (s, 9H), 0.89 (d, J = 7.9 Hz, 3H), 0.86 (s, 9H), 0.84 (s, 9H), 0.07 (s, 6H), 0.05(s, 3H), 0.05(s, 3H), 0.04 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.7, 144.7, 142.1, 134.6, 129.6, 126.8, 124.0, 77.1, 74.1, 72.4, 60.5, 56.7, 54.9, 38.8, 38.1, 35.5, 34.4, 31.1, 29.7, 25.9, 25.7, 18.2, 18.1, 16.9, 16.0, 15.5, 13.4, -4.5, -4.9, -5.0, -5.1, -5.3, -5.4; IR (neat) 3452, 2930, 1700, 1634, 1251, 1112, 835, 769 cm⁻¹; ESI HRMS m/z calcd for C₄₀H₇₆O₆Si₃Na [M + Na]⁺ 759.48419, found 759.48451.

(1R,2R,4E,7S,10E,12E,14R,15S,16R)-2,15-Bis(tert-butyldimethylsilyloxy)-7-((S)-4-hydroxybutan-2-yl)-10,12,14-trimethyl-8,17-dioxabicyclo[14.1.0]heptadeca-4,10,12-trien-9-one (41). To a solution of 40 (20 mg, 0.027 mmol) in MeOH (2 mL) was added PPTS (2.0 mg, 0.008 mmol). After 17 h of stirring, MeOH was removed under reduced pressure, and saturated NaHCO3 was added. The aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (30% EtOAc/hexane) gave primary alcohol 41 (13.8 mg, 82%). $[a]_{D}^{25}$ +13.1 (c 0.7, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.37 (s, 1H), 5.64–5.54 (m, 3H), 4.88–4.81 (m, 1H), 4.04 (d, J = 4.0 Hz, 1H), 3.85-3.63 (m, 2H), 3.41-3.31 (m, 1H), 3.13-3.06 (m, 1H), 2.94-2.85 (m, 2H), 2.51-2.39 (m, 3H), 2.35-2.23 (m, 1H), 2.04 (s, 3H), 1.97 (s, 3H), 1.88-1.76 (m, 1H), 1.47-1.38 (m, 2H), 1.08 (d, J = 8.0 Hz, 3H), 0.94 (d, J = 6.0 Hz, 3H), 0.86 (s, 9H), 0.84 (s, 9H), 0.07 (s, 3H), 0.05(s, 3H), 0.04(s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.5, 144.8, 142.1, 134.6, 130.0, 126.6, 123.9, 76.8, 74.1, 72.5, 60.6, 56.7, 55.0, 38.8, 38.2, 35.4, 34.4, 31.7, 31.4, 29.6, 25.8, 25.7, 18.2, 18.1, 17.0, 16.0, 15.5, 13.4, -4.5, -4.9, -5.0, -5.1; IR (neat) 3451, 2929, 2857, 1698, 1251, 1118, 836, 776 cm⁻¹; ESI HRMS m/z calcd for C₃₄H₆₂O₆Si₂Na [M + Na]⁺ 645.39771, found 645.39835.

Dioxabicyclo[14.1.0]heptadeca-4,10,12-trien-7-yl)butanal: (1*R*,2*R*,4*E*,75,10*E*,12*E*,14*R*,155,16*R*)-2,15-Bis(*tert*-butyldimethylsilyloxy)-7-((*S*,*E*)-6-((4*S*,5*R*,6*S*)-6-((2*R*,3*S*)-3-methoxybutan-2yl)-2,2,5-trimethyl-1,3-dioxan-4-yl)hex-4-en-2-yl)-10,12,14-trimethyl-8,17-dioxabicyclo[14.1.0]heptadeca-4,10,12-trien-9one (42). To a solution of alcohol 41 (8 mg, 0.012 mmol) in CH₂Cl₂ (2 mL) were added NaHCO₃ (3.2 mg, 0.036 mmol) and Dess-Martin periodinane (8 mg, 0.018 mmol). After 30 min of stirring, saturated Na₂SO₃ was added. The mixture was stirred for 30 min, and then the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification through a plug of silica gave aldehyde **2**. The aldehyde was immediately used for the next step.

To a solution of sulfone 3 (11 mg, 0.024 mmol) in THF (0.5 mL) at -78 °C was added KHMDS (24 μ L, 0.024 mmol). The mixture was

The Journal of Organic Chemistry

stirred at -78 °C for 5 min, and a solution of aldehyde 2 (5 mg, 0.0082 mmol) in THF (0.5 mL) was added. After 45 min of stirring at -78 °C, saturated NH₄Cl was added. The aqueous layer was extracted with EtOAc (2 \times 10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (20% EtOAc/ hexane) gave 42 in (5.4 mg, 80%). $[\alpha]^{25}_{D}$ +7.5 (c 0.4, CHCl₃); ¹H NMR (CDCl₃, 300 MHz) & 7.36 (s, 1H), 5.63-5.42 (m, 5H), 4.85-4.75 (m, 1H), 4.04 (d, J = 3.2 Hz, 1H), 3.81-3.71 (m, 1H), 3.41-3.34 (m, 2H), 3.31 (s, 3H), 3.28-3.18 (m, 1H), 3.09 (dd, J = 7.4, 1.3 Hz, 1H), 2.93-2.83 (m, 2H), 2.53-2.37 (m, 4H), 2.32-2.12 (m, 4H), 2.06 (s, 3H), 1.96 (s, 3H), 1.94-1.77 (m, 3H), 1.62-1.52 (m, 3H), 1.31 (s, 3H), 1.28 (s, 3H), 1.12 (d, J = 6.2 Hz, 3H), 1.07 (d, J = 7.2 Hz, 3H), 0.97 (d, I = 6.8 Hz, 3H), 0.88 (d, I = 5.7 Hz, 3H), 0.86 (s, 9H), 0.83 (s, 9H), 0.07 (s, 3H), 0.04(s, 3H), 0.03 (s, 6H); ¹³C NMR (CDCl₃, 75 MHz) δ 169.5, 144.7, 142.1, 134.6, 129.9, 129.1, 129.0, 126.6, 123.9, 100.1, 78.8, 76.7, 73.7, 72.3, 69.5, 56.6, 56.2, 54.9, 41.4, 38.8, 38.1, 36.7, 36.0, 34.2, 34.0, 29.6, 25.7, 25.2, 23.7, 18.2, 18.1, 17.0, 16.2, 16.1, 15.5, 13.4, 11.9, 10.2, -4.5, -4.9, -5.0, -5.1; IR (neat) 2928, 2855, 1701, 1250, 1115, 836, 776 cm⁻¹; ESI HRMS *m/z* calcd for C₄₈H₈₆O₈Si₂Na [M + Na]⁺ 869.57589, found 869.57438.

(1S, 2R, 4E, 7S, 10E, 12E, 14R, 15S, 16S) - 7 -((2S,7S,8R,9R,10S,11S,E)-7,9-Dihydroxy-11-methoxy-8,10-dimethyldodec-4-en-2-yl)-2,15-dihydroxy-10,12,14-trimethyl-8,17-dioxabicyclo[14.1.0]heptadeca-4,10,12-trien-9-one (1). To a solution of 42 (4.0 mg, 0.0047 mmol) in MeCN (1 mL) was added fluorosilic acid 20-25 wt % solution in water (0.2 mL). After 3 days of stirring at room temperature, saturated NaHCO3 was added, and the aqueous layer was extracted with EtOAc (2×10 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography gave FD-891 (1) in (2.0 mg, 90%). $[\alpha]^{25}_{D}$ +11.5 (c 0.1, MeOH); ¹H NMR (CDCl₃, 500 MHz) δ 7.30 (s, 1H), 5.83–5.72 (m, 1H), 5.64–5.43 (m, 4H), 4.88–4.81 (m, 1H), 4.20–4.10 (m, 1H), 3.88 (d, J = 4.9 Hz, 1H), 3.81(d, J = 7.9 Hz, 1H), 3.63-3.56 (m, 2H), 3.34 (s, 3H), 3.27-3.23 (m, 1H), 3.16-3.09 (m, 2H), 2.58-2.43 (m, 1H), 2.37-2.28 (m, 3H), 2.25-2.14 (m, 1H), 2.09 (s, 3H), 2.02 (s, 3H), 1.90–1.53 (m, 7H), 1.19 (d, J = 6.9 Hz, 3H), 1.13 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 7.9 Hz, 3H), 0.89 (d, J = 6.9 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H); 13 C NMR (CDCl₃, 125 MHz) δ 168.8, 144.0, 141.7, 135.8, 130.4, 130.0, 129.9, 128.0, 124.6, 82.6, 78.4, 76.4, 73.2, 71.0, 70.8, 56.1, 56.0, 55.3, 55.0, 39.6, 39.5, 38.1, 37.0, 35.9, 35.8, 34.8, 34.0, 33.9, 16.5, 16.4, 16.3, 15.5, 13.6, 11.6, 4.9; IR (neat) 3417, 2923, 1704, 1117, cm⁻¹; ESI HRMS m/z calcd for C₃₃H₅₄O₈Na [M + Na]⁺ 601.37109, found 601.36988.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H and ¹³C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: yadavpub@iict.res.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.K.D. thank UGC, New Delhi for the award of fellowship.

REFERENCES

(1) Seki-Asano, M.; Tsuchida, Y.; Hanada, K.; Mizoue, K. J. Antibiot. 1994, 47, 1234–1241.

(2) Kataoka, T.; Yamada, A.; Bando, M.; Honna, T.; Mizoue, K.; Nagai, K. *Immunology* **2000**, *100*, 170.

(3) Natsume, M.; Komiya, M.; Koyanagi, F.; Tashiro, N.; Kawaide, H.; Abe, H. J. Gen. Plant Pathol. 2005, 71, 364–369.

(4) (a) Eguchi, T.; Kobayashi, K.; Uekusa, H.; Ohashi, Y.; Mizoue, K.; Matsushima, Y. K.; Kakinuma, Y. K. Org. Lett. 2002, 4, 3383–3386.
(b) Eguchi, T.; Yamamoto, K.; Mizoue, K.; Kakinuma, K. J. Antibiot. 2004, 57, 156–157.

(5) (a) Crimmins, M. T.; Caussanel, F. J. Am. Chem. Soc. 2006, 128 (10), 3128–3129. (b) Fortanet, J. G.; Murga, J.; Carda, M.; Marco, J. A.; Matesanz, R.; Diaz, J. F.; Barasoain, I. Chem.—Eur. J. 2007, 13, 5060–5074. (c) Fortanet, J. G.; Murga, J.; Carda, M.; Marco, J. A. Org. Lett. 2006, 8 (13), 2695–2698. (d) Fragment synthesis: Marco, J. A.; Murga, J.; Fortanet, J. G.; Carda, M. Synlett 2004, 15, 2530–2832.

(6) (a) Yadav, J. S; Reddy, Ch. S. Org. Lett. 2009, 11 (8), 1705-1708.
(b) Yadav, J. S.; Pattanayak, M. R.; Das, P. P.; Mohapatra, D. K. Org. Lett. 2011, 13 (7), 1710-1713. (c) Yadav, J. S.; Reddy, C. N.; Sabitha, G. Tetrahedron Lett. 2012, 53 (20), 2504-2507. (d) Yadav, J. S.; Reddy, K. B.; Sabitha, G. Tetrahedron 2008, 64, 1971-1982.

(7) Trost, B. M.; Wrobleski, S. T.; Chisholm, J. D.; Harrington, P. E.; Jung, M. J. Am. Chem. Soc. **2005**, 127 (39), 13589–13597.

(8) (a) Brown, H. C.; Ramachandran, P. V. J. Organomet. Chem. 1995, 500, 1–19. (b) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23–35.

(9) Schomaker, J. M.; Pulgam, V. R.; Borhan, B. J. Am. Chem. Soc. 2004, 126, 13600.

(10) (a) Mori, K.; Sku, Y. B. *Tetrahedron* 1988, 44, 1035–1038.
(b) Okamura, H.; Kuroda, S.; Ikegami, S.; Tomita, K.; Sugimoto, Y.-I.; Sakaguchi, Y.-I.; Ito, Y.; Katsuki, T.; Yamaguchi, M. *Tetrahedron* 1993, 49, 10531–10554.

(11) Yadav, J. S.; Ather, H.; Rao, N. V.; Reddy, M. S.; Prasad, A. R. *Synlett* **2010**, *8*, 1205–1208.

(12) Ancerewicz, J.; Vogel, P. Helv. Chim. Acta 1996, 79, 1393.

(13) (a) Mitsunobu, O. Synthesis 1981, 1–28. (b) Hughes, D. L. Org. React 1992, 42, 335–656. (c) Valentine, D., Jr; Hillhouse, J. H. Synthesis 2003, 317–334.

(14) Masuda, T.; Osako, K.; Shimizu, T.; Nakata, T. Org. Lett. 1999, 1, 941–944.

(15) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360.

(16) Inanada, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, 52, 1989.